An Minimum-Energy-Based High-Degree Polynomial Trajectory Planning and Tracking Control for an LCD Glass-handling Robot
نویسندگان
چکیده
A new method of minimum-energy point-to-point (PTP) trajectory planning is proposed for an LCD glass-handing robot, which is driven by a permanent magnet synchronous motor (PMSM). The variable structure controller (VSC) is designed to track the trajectories and compensate LuGre model of frictional torque effects. The robot system is described by a mechanical equation and an electrical equation. To generate the minimum-energy trajectory, we employ a high-degree polynomial with suitable end-point conditions. The real-coded genetic algorithm (RGA) is used to search for the coefficients of the polynomial with the fitness function of minimum-energy input. Finally, numerical simulations of the minimum-energy inputs are compared for various degrees of polynomials. It is concluded that the proposed methodology can effectively design the minimum-energy trajectory, and the nonlinear VSC can track the designed trajectories for the robot system driven by a PMSM.
منابع مشابه
Trajectory Tracking Weeled Mobile Robot Using Backstepping Method with Connection off Axle Trailer
The connection of the tractor to the inactive trailer or motor vehicle causes a motion control problem when turning in the screw, forward or backward movements and high speeds. This is due to the inactive trailer being controlled by the tracking using a physical link that is not affected by the movement. Trailers usually take tracks under these conditions. This phenomenon is called Jack Knife. ...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملTrajectory Planning Using High Order Polynomials under Acceleration Constraint
The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...
متن کاملRobust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کاملPlanning and Control of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions
This research focuses on proposing an optimal trajectory planning and control method of two link rigid-flexible manipulators (TLRFM) for Dynamic Object Manipulation (DOM) missions. For the first time, achievement of DOM task using a rotating one flexible link robot was taken into account in [20]. The authors do not aim to contribute on either trajectory tracking or vibration control of the End-...
متن کامل